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Eigenvalues of a slightly stiff pendulum with a small bob 

W. D. L A K I N  

Dept. of Mathematics, University of Toronto, Toronto, Canada* 
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S U M M A R Y  
We consider an eigenvalue problem associated with the small vibrations of a slightly stiff pendulum. In this problem, 
the fourth order differential equation contains two small dimensionless parameters and takes its distinctive character 
from the simple turning point where the coefficient of the second derivative term vanishes. This turning point always 
lies outside of the interval of interest. However, a significant feature is that in the parameter range corresponding to 
small bob mass, one endpoint lies inside the critical layer about the turning point, and hence outer expansions alone are 
not adequate for formation of a characteristic equation. Approximations to solutions of the governing differential 
equation are obtained and related by the method of matched asymptotic expansions. All outer expansions are required 
to be "complete" in the sense of Olver. The ordering of approximations to the characteristic equation is found to depend 
critically on the relative sizes of the two parameters. We obtain consistent second approximations for the square roots 
of the eigenvalues. 

1. Introduction 

In this work, we consider a boundary value problem which arises in connection with the small 
vibrations of a slightly stiff pendulum. The problem consists of the fourth-order differential 
equation 

e 3 w i V - { ( 1 + f ) - y } w " + w ' - 2 2 w = O  ( 0 < y <  1) 

and the boundary conditions 

w(O) = w'(O)= w"(1)=e3w" ' (1 ) - f [w ' ( l ) -2Zw(1)]  = 0 

(1.1) 

(1.2) 

where w = w(y), j~2 is the desired eigenvalue, e and 6 are dimensionless parameters, and e is 
small, real, and positive. Throughout this work, we shall also assume ~ is small, real and positive 
so that 

p h e = p h 6 = 0  and ~ 1 , 6 4 1 .  (1.3) 

Equation (1.1) has a simple turning point at Yc = 1 + 6 where the coefficient of w" vanishes. As 
6 > 0, this turning point always lies outside of the interval of interest. However, a significant 
feature of the boundary value problem is that for 6 order e or smaller, the right-hand endpoint 
y-- 1 lies inside the critical layer about Yc and a characteristic equation for the eigenvalues cannot 
be formed using only approximations valid away from the turning point. Indeed, in this case the 
turning point dominates the problem and the asymptotic behavior of the eigenvalues depends 
critically on the relative sizes of the two parameters. The eigenvalue also appears in the second 
boundary condition at y = 1. 

The reduced equation obtained by formally letting e tend to zero in Eqn. (1.1) is of second 
order, and we are thus dealing with a singular perturbation problem in e. Inner approximations 
valid at and close to the turning point and outer approximations valid away from the turning 
point must be obtained separately and then related so that they asymptotically represent the 
same solutions. We will use the method of matched asymptotic expansions. As usual, the va- 
riable y will be assumed complex, and we consider bounded domains in the complex y-plane 
which contain the real interval [0, 1]. We also require that domains of validity are suitably 
restricted so that all outer expansions are "complete" in the sense of Olver [8]. Inner and outer 
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approximations are matched by means of the asymptotic matching principle in the form stated 
by Fraenkel [3]. Using these matched expansions, we derive approximations to the characteris- 
tic equation and obtain two terms in the asymptotic expansion for 2 when 6 is order e or smaller. 
In analyzing the characteristic equation, to retain consistent ordering different ranges of 6 
must be considered separately. In all cases, however, we find that the eigenvalues in the present 
problem are identical at lowest order with the eigenvalues of the limiting problem with 6 = 0 
where the turning point Yc and endpoint y = 1 coincide. 

The boundary value problem (1.1-2) models the small vibrations of a vertical pendulum 
consisting of a uniform flexible rod of length L, clamped at one end, with its other end attached 
to a bob of mass M. If shear deformation and rotary inertia are neglected, linear Euler-Bernoulli 
theory and an appropriate scaling of physical variables lead to Eqn. (1.1). The second boundary 
condition at y = 1 comes from the equation of motion of the bob. If 9 is the acceleration due to 
gravity while p and E1 are the mass per unit length and bending stiffness, respectively, of the 
rod, the parameters 6 and e correspond to the ratios 

E /  \ M 
s = ~pg~) and 6 -  pL" (1.4) 

A slightly stiff rod thus leads to e ~ 1 while 6 measures the ratio of bob mass to rod mass. 
Physically, 2 represents a frequency made dimensionless with respect to the time scale (L/g) ~. 

In this paper, we have assumed 6 is order e or smaller so that the turning point is close to the 
right-hand endpoint. The mathematical limit 6--+0+ corresponds to the mass of the bob 
tending to zero. On the other hand, when the mass of the bob is not small compared to the rod 
mass, 6 is order one or larger. This situation has been studied by Handelman and Keller [-4]. 
In their case, the turning point lies relatively far away from the interval of interest. Although 
the boundary value problem is still a singular perturbation in e., outer expansions alone are 
now adequate to form a characteristic equation. Indeed, from a mathematical point of view, 
the purpose of putting an order one bob mass on a pendulum is to avoid a turning point problem 
where inner approximations must be used. The situation is quite similar for a rapidly rotating 
flexible rod. Boyce and Handelman [2] have considered rotating rods with order one tip 
masses while the turning point problem for the rotating rod alone has been studied by Lakin 
[5] and Lakin and Ng [6]. 

To explicitly bring out the turning point nature of the present problem with ~ ~ 1, it is con- 
venient to define the Langer variable q (y) and a new dependent variable q~ (t/) by the relations 

q(y) = ( l + 6 ) - y  and qS(t/)= w(y). (1.5) 

The turning point Yc now corresponds to q =0  while q'(yc) = - 1 and q"(y~)= 0. In terms of the 
new variables, (1.1) becomes 

F,3 f f ) i v - -q~ ' - - f f ) t - -  22 ff) = O . (1.6) 

This equation provides a natural starting point for the present theory. We note that 6 does not 
appear explicitly in Eqn. (1.6). This is a major advantage in defining the Langer variable q 
as we need not at this time make specific assumptions on the relative sizes of 6 and e. The 
boundary conditions corresponding to Eqn. (1.2) are now 

q~(1 +6) = ~b'(1 +6) = 0 (1.7) 
and 

qS" (6) = e 3 qS'" (6)-  6 [qS' (6) + 2 2 q5 (6)] = 0.  (1.8) 

From Eqn. (1.8), it is clear that the distance between the left-hand endpoint and the turning 
point is the small parameter 6. 

The inner expansions for solutions of Eqn. (1.6) contain functions which exhibit certain 
symmetries in the complex q-plane. To take full advantage of this fact, we will seek approxima- 
tions to seven exact solutions of Eqn. (1.6). While the forms of these exact solutions are, of 
course, unknown, the solutions may be specified by their asymptotic properties. To within 
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a multiplicative constant, we may uniquely define four solutions as follows : 
(i) The solution U0 (1/) is well balanced in bounded domains containing the turning point 

r/=0. 
(ii) The three solutions Vk(t/) are recessive in the sectors Sk bounded by anti-Stokes lines 

(k = 1, 2, 3 ; see Fig. 1). 
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Figure  1. The  ant i -Stokes  lines (left) and  the Stokes l ines (right) in the q-plane. 

To within multiplicative constants and additive multiples of Uo(t/)we may define three 
additional solutions by: 

(iii) The three solutions Uk(t/) are purely balanced in the sectors T k botmded by Stokes lines 
(k = 1, 2, 3 ; see Fig. 1.). 

These seven solutions to the fourth order equation must be related through three exact 
(but unknown) connection formulas. With the exception of Uo (tl), outer expansions for these 
solutions will exhibit the Stokes phenomenon. As a byproduct of the matching procedure, we 
will obtain approximations to the Stokes multipliers which specify the required analytic 
continuations of outer expansions across Stokes lines in the complex plane. 

2. Inner expansions 

In this section, we wish to derive inner approximations valid close to the turning point t/= 0. 
Balancing the first, second, and fourth derivative terms in Eqn. (1.6) shows that the critical 
layer about  the turning point will have thickness order ~. Accordingly, we define the stretched 
variable ~ by 

= r//e (2.1) 

and let 

~(~) = 4) (r/). (2.2) 

With this scaling Eqn. (1.6) now becomes 

c/.- (/) 0 (2.3) 

which suggests seeking expansions of the form 

~ =  ~, ~("'({)e". (2.4) 
n = 0  

This expansion gives a sequence of differential equations for the ~("), and, to write these equa- 
tions in compact form, we let 

D = d/d{ and A = D 2 -  3.  (2.5) 
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DAD'S(~ 0 (2.6) 

DADT(,+ 1) = 22 ~(,) for n > 0.  (2.7) 

From these equations, we may obtain partial sums of seven inner expansions which will be 
denoted by uo, Uk, and Vk (k = 1, 2, 3). These expansions are defined by the requirement that as 
I~ I ~ 0o they have the same asymptotic behavior as the exact solutions Uo, Uk and l/~, respec- 
tively. Thus, t7 0 most be well balanced, Uk must be purely balanced as I~1--, oo in Tk, while Vk 
must be recessive as I~1--' 0o in S k. 

Solutions of Eqns. (2.6-7) are expressible in terms of the generalized Airy functions Ak(~, p), 
B0(~, p) and Bk(~;p, q) (k= 1, 2, 3). These functions were originally developed by Reid [9] 
in connection with the Orr-Sommerfeld equation and have been adapted by Lakin [51 to study 
the differential equation of a rapidly rotating flexible rod. In particular, A I (z, 0) is just the usual 
Airy function Ai(z) while Bk(Z; O, 1) satisfies the differential equation 

(d2/dz z - z)Bk(Z; 0, 1) = 1. (2.8) 

Bo(z, p) = Bk(Z; p, 0) vanishes for p < 0 and is a polynomial of degree p -  1 for p=  1, 2, 3 . . . . .  
As [z[-+oQ, Bo(z , p) is well balanced, Bk(Z; p, q) is purely balanced in Tk, while Ak(Z, p) is  
recessive in Sk. 

Consider first the inner expansions u0 and Uk of balanced-type. Equation (2.6) and the re- 
quired asymptotic behavior give that t~(o ~ must be a multiple of Bo(~, 1) = 1. Setting u o'(~ (4)= 1 
and requiring that fi(o ") contain no multiple of ti(o ~ for n > 1 now gives 

24~ 2 
aO(~ ) = 1--gJ(2{+e 2 ~ -  + O(g3). (2.9) 

Similarly, uk must be balanced as 1{ 1 ~ oo in T k. Equation (2.6) shows that ~2~(~ thus involve 
a multiple ofB k (4; 1, 1). However, care must be taken as arbitrary multiples of tT(o ~ may also be 
added to ~o) without altering the asymptotic behavior. Thus, tT~ ~ will be of the form 

a(k ~ CkBk({ ; 1, 1)+ dkBo(~, 1) 

where ck and d k are constants independent of e. For simplicity, we will choose Ck = 1 and dk = 0. 
However, this choice of dk does not imply that higher approximations ~") with n _> 1 will not 
involve multiples of Bo (4, P) with p > 1. Indeed, for n >= 1 ~n) will involve a polynomial of degree 
n in ~ as well as a multiple of 22"Bk({ ; n +1,1). If we further require that 0~ ") contains no multiple 
of ~(f), then Eqn. (2.7) gives 

24 
ak(~) = Bk({; 1, 1)--e22[Bk({; 2, 1)+3] + e2 [Sk(~; 3, 1)+�88 +O(e3). (2.10) 

For expansions of recessive type, Eqn. (2.6) and the required asymptotic behavior give that 
~o) must be a multiple of Ak(#, 1). Setting the normalization constant to unity and requiring 
that g(k ") contains no multiple of ~(k ~ for n __> 1, we now easily obtain 

24 
~k(~)---- Ak(~, 1)--e22Ak(~, 2) + g2 2 -  Ak(~  ' 3)...~ O(g3) , (2.11) 

In general, b~")will be a multiple of 22"Ak({, n+  1). 

3. Outer expansions 

We now wish to derive partial sums of seven outer expansions valid away from the turning 
point. These expansions will be denoted by uo, Uk and Vk (k = 1, 2, 3) and are defined by the 
conditions that fi0 is well balanced, ~k is purely balanced in Tk, while ~k is recessive in Sk. 
Domains of validity will be suitably restricted so that all expansions are "complete" in the 
sense of Olver [8]. 
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For the outer expansions 0o and ~k of balanced-type, we assume a formal expression in 
powers of e3, i.e. 

qS = ~ ~(")(t/)e 3n . (3.1) 
n=O 

Using Eqn. (3.1) in Eqn. (1.6) and equating powers of ~3 to zero now gives the sequence of 
relations 

2,  2 ~(o) = O, (3.2) 

d 4 
2, 2 ~(,) = dr/4 qS(,- 1) (n > 1) (3.3) 

where 
d z d 

a~ 2 = t/dr/a + d~ + 22. (3.4) 

For applications to the present boundary value problem, we will require only fi(o ~ and ~o). 
Linearly independent solutions of Eqn. (3.2) involve multiples of the Bessel functions Jo (22t/~) 

and Yo(22t/~). The former is regular at r/= 0 and may thus be identified with fi(o ~ Hence 

Uo (t/) = Jo (22r/~ ) + O (~3). (3.5) 

A second linearly independent solution of Eqn. (3.2) is 

rc y0 (22t/~) (3.6) 

where the normalization constant re/2 has been chosen to facilitate matching to the inner 
expansions. The Bessel function Yo (22t/~) has a logarithmic branch point at r/= 0. To fix the 
branch in Eqn. (3.6), it is convenient to place a branch cut along the Stokes line dividing 7"1 and 
T 2 and consider ph t/ in the range 

-4r~/3 < ph r/< 2x/3. (3.7) 

However, a single exact solution of Eqn. (1.6) cannot be asymptotic to ~ for all ph r/ in this 
range. In the complete sense, ~ is a valid asymptotic representation for a given exact solution 
of balanced-type only in a sector of angle 2rc/3 bounded by Stokes lines. We thus define the 
three outer expansions ~k by the relations 

fik(~/)=~(~/) for ~/~Tk. (3.8) 

For later use in the central matching problem, we note that fi(o ~ and fi~o) have the power series 
expansions 

~,4r]2 
fiCo~ = 1-22~/ + ~ + 0(~/3) (3.9) 

and 
~(k ~ (~/) = �89 ((log I/+ 7) U(O ~ (r/) + 222 r/+ O (172)} + (~7 + log 2)17(0 ~ (~/) (3.10) 

where 7 is the Euler constant and the coefficient of ~(o ~ in Eqn. (3.10) has been purposely split 
into two parts. 

Outer expansions ~k of recessive type may be obtained using the WKBJ technique. Letting 

qS(q) = exp { ~ g01)&l} (3.11) 

and expanding g (r/) in the form 

gO1) = e- ~ go (rl)+ gx (rl) + e~ g2 (q) + . . . .  (3.12) 

we obtain a sequence of equations for g,01) beginning with 

~t4 = r (3.13) 
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and 
(4g~-Ztlgo)gl 2 , , (3.14) = -6gogo+go+t lgo .  

Equation (3.13) gives go = 0 or go = -+ q~. As the trivial solution would lead to an expansion of 
balanced type, we must have go = + t/+ and hence 

5 g; + �89 (3.15) 
91 (t/) -- 2 go 

The transformation (3.11) now gives the approximations 
1 _ &  ~ _ 3  _ a a ~+ (t/) = y~ ~e"t/ 4 exp { +2e ~tU} P+ (q, e }) (3.16) 

where P+ (t/, e ~) is the Poincar6 series 

P+(t/, e~)= 1 + ~ ( _+ l)" G, (q) e 3"/2 . (3.17) 
n = l  

The normalization factor 12-n- ~ e~ in Eqn. (3.16) has again been chosen to facilitate matching to 
the inner expansions, and 2 first appears in Eqn. (3.17) at order e ~. To fix the branch in these 
expressions, we again choose ph r/in the range (3.7). Beginning with n = 2, expansions of the 
G,(t/) about q = 0 may contain logarithmic terms. 

In the complete sense; a given exact solution of recessive type can be asymptotic to ~+ or 
_ only in a sector of angle 4zc/3 bounded by Stokes lines. Accordingly, we define the expansions 

~, and ~2 by the relations 

e l =  - ~ _  , ~/~T2w T3 (3.18) 
and 

~2 = i~+ , r l ~ T I ~ T 3 .  (3.19) 

Care must be taken in the definition of ~3 as the branch cut lies in the interior of its domain 
T~ u T2. For t/c T2, we take 

v3 = - i ~+, t/e T 2 . (3.20) 

On crossing the branch cut from T2 into T~, v3 may change its form but not its value. Hence, 
taking into account multiples of 2rci introduced by the logarithmic portions in the G,(q), we 
must have 

~ 3  = ~ -  { 1 " - [ - O ( / 3 3 ) }  for r / E T  l . (3.21) 

The expressions for fik and ~k are not, of course, valid at the turning point itself. However, 
in the stated sectors they remain valid asymptotic representations of solutions of Eqn. (1.6) 
down to I~1 greater than order e- 

4. The central matching problem and Stokes multipliers 

In the central matching problem, one wishes to relate inner and outer expansions so that they 
represent different asymptotic expansions of the same solution. We will fix normalizations by 
assuming that the outer expansions of the previous section are asymptotic to the exact solutions 
of Eqn. (1.6). Hence, when I~/[ is larger than order e, we have 

Uo(rl) ~ Uo(q), Uk(q)~ Uk(~l) and Vk(r/)~ Vk(~/) �9 (4.1) 

Close to the turning point, the exact solutions must now be asymptotic to the combinations 

Uo (~) "~ Bo (0 Uo (~), / 

U, (tl) ~ Ck (e) ~, (r + B k (e) ~7 o (~)' / (4.2) 

D (O 

where Bo, Bk, Ck and D k above, which depend only on ~, are the so-called central matching 
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coefficients. With our normalizations, ~o and g0 are simply different representations of Uo(t/) 
[-compare Eqns. (2.9) and (3.9)] and hence Bo(e ) = 1.To determine approximations to the re- 
maining matching coefficients, we will use the asymptotic matching principle with inner and 
outer expansion operators. 

Let .! (q, ~) be a given function and let Ep denote the outer expansion operator. Then, E f t  
is the outer expansion o f f  up to and including terms of order e p. Similarly, if Hq denotes the 
inner expansion operator, Hqf  is the inner expansion o f f  up to and including terms of order 
e q. In terms of these operators, the asymptotic matching principle may be written as (see [3-1) 

(EpHq-HoEp) f=O for neO (4.3) 

with 0 denoting the overlap region where both inner and outer expansions are valid. 
Consider first the coefficients associated with the balanced-type solutions Uk(q). To obtain 

approximations to Bk(e) and Ck(e) we must apply the matching principle in the sector t/~ T k 
where both Uk and 0 k (as [~1-~ oo) are purely balanced. In particular, for q e Tk c~ 0 

/ J l e o  G = 
= �89 (+7) (1 -e22~)  +2e~22} +�89 e+ log  22 +7) (1 - e22~)} (4.4) 

while 
EoHI Uk = EoH~ {Ck(e)Ok(i) + Bk(e)00(~)} �9 (4.5) 

These equations suggest that the matching coefficients have expansions with respect to the 
asymptotic sequence log e, 1, e log e, e, e21og2e, 521og 5, e 2 . . . . .  Matching in Tk~ 0 with p = 3  
and q = 4, we find that 

B k (e) = �89 {log e + (7 + 2 log 2)+ O (ca)} (4.6) 
while 

Ck(F.) ~- --�89 O(e3) �9 (4.7) 

Because of the rapidly varying exponential factors in Eqn. (3.16), the expansion operator Ep 
cannot be applied directly to solutions Vk of dominant-recessive type. Rather, we must use the 
modified outer expansion operator 

E + = G +- EpG ~ (4.8) 
with 

G + = �89 e~t/-~ exp { _+-~ e-}t/-~ } 
= �89 n-  4 ~- ~ exp { + 2 ~-~} (4.9) 

and the matching principle 

(E~ Hq-HoE~) f l=  0 for r /c0 .  (4.10) 

To derive approximations to Dk(5 ), the matching must be done in the sector r/~ Sk where both 
Vk and gk (as I~1~ 0o) are purely recessive. A short calculation gives 

Dk(e) = 1 + O(e 3 log 5). (4.11) 

Outer expansions for the six exact solutions Uk and Vk(k = 1, 2, 3) exhibit the Stokes phenom- 
enon and, in the complete sense, are valid asymptotic representations only in certain re- 
stricted sectors of the complex q-plane which have Stokes lines as boundaries. The continuation 
of complete outer expansions across bounding Stokes lines is known as the lateral connection 
problem. Using results from the central matching problem and exact connection formulas for 
the generalized Airy functions in the inner expansions, we may now obtain the required analytic 
continuations directly. For simplicity, only the two representative solutions U 3 and V 2 will be 
considered in detail. 

Let rio, fik and ~k denote the expressions in section three. Then, in the complete sense, Ua is 
asymptotic to fi3 for t/e T 3. On crossing the Stokes line into T2, the outer expansion of Ua must 
discontinuously pick up a multiple of the recessive outer expansion Vl. Similarly, in T~ the 
outer expansion of U 3 must contain multiples of both ~2 and Uo. Hence, if So, s1 and s 2 are 
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Stokes multipliers which characterize the continuations, we have 

{ u3(r/) (r/E T3) 

u 3 ~  ~l(~)+So~0(.)+sl~2(.)( .~rx) 
u2 (t/)+ s2 v, (1/) (t/~ r2) 

The exact connection formulas 

B 3 (~ ; p, 1) = B a (~ ; p, l) + 2hi [A z (~, P) + Bo (~, P) ] ,  

U3(~; p, 1)= S2(~; p, 1)-2xiA1 (~, P) 

and the approximations to Bk(8) and Ck(8 ) now give immediately that 

s o = s, = - s z  = - ~ i [ 1 + 0 ( 8 3 ) ]  

Similarly, for Vz we must have 

~ ~; ~2 (r/) (t/6 T, w T3) 

V2 
--~3(.)+S3~(")+S~0(") ( ~  r2) 

The approximation to Dz (e) and the exact relations 

3 

Z Ak(~, p) = -Bo(r  P) 
k - 1  

(4.12) 

(4.13) 

(4.14) 

now give for the Stokes multipliers associated with this solution 

53 = s4 = - 1 + O ( 8 3  log 8). (4.15) 

For use in the boundary value problem, we will need outer expansion for both U 3 (r/) and 
V 2 (r/) directly on the Stokes line ph q = 0. Lakin and Ng [6] have shown that the correct form 
for a complete outer expansion on a Stokes line itself is the mean of the complete expansions 
valid on either side of the line. Hence, for ph r/= 0 

$2 

u3(,7) ~ ~3(,7) + 5- ~(,7) ] 
while I (4.16) 

s3 
v2(~) - ~2(~) + ~- ~, (~) + ao @. 

We further note that on the Stokes line ph t/= 0, U 0 (r/) ~ rio (t/)is well balanced while V l(q) ~ ~1 (r/) 
is maximally recessive. 

5. The boundary value problem 

We now wish to use the matched expansions derived in the previous sections to study the 
boundary value problem Eqns. (1.6-8). A fundamental set of linearly independent solutions of 
Eqn. (1.6) consists of U 0, one of the three solutions Uk, and two of the three solutions V k. We will 
choose the set {Uo, U3, 1/1, V2} which is "numerically satisfactory" in the sense of Miller I-7]. 
Conditions (1.7-8) now lead to a characteristic equation for the eigenvalues involving a four-by- 
four determinant. Let ~3 denote the operator 

~ 3 = 8 3  __ (~ A V 2 2  = _ _  - -  (~ - 1  -t- •2 ( 5 . 1 )  

Further, let 

W ( X ,  Y) = X(tl2 ) Y ' ( t l 2 ) -X ' ( t l2 )  Y(~lz) (5.2) 
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denote the Wronskianof X and Y at t h = 1 + (5 and 

d 2 Y d 2 X 
B(X, u =..~3X(t/1) ~ (t/,) - ~ (t/,)~3 Y(t/1) 

with t/a = ~- Then, on expanding the determinant, we obtain the exact characteristic equation 

B(U o, U3)W(V~, V2)-B(Uo, V~)W(U3, V2)+ B(Uo, V2) W(a3, ]/71) 
4- B(U3, V1)W(Uo, V2)-B(U3, V2) W(Uo, V1)+B(V1, V2)W(Uo, U3)=0 

(5.4) 

As the boundary point t h = 1 + 6 is always far away from the turning point q = 0, the 
Wronskians in Eqn. (5.4) may be consistently approximated using complete outer expansions. 
On the other hand, with our assumption that c5 is at most order e, the boundary point t/1 = fi 
lies inside the critical layer about t/= 0. As a result, the matched inner expansions must be used 
to consistently approximate the quantities B(X, Y). 

For example, 

W(U~, V d = W(~3, ~,) (5.5) 
but 

B(U3, 1/1) = D, (~){C3 (QB(r3, vl)+B3(e)B(uo, v,)}. (5.6) 

Using the appropriate expansions in Eqn. (5.4) now leads to an approximate characteristic 
equation which contains three distinct types of terms and may be written in the form 

(5.7) 

Terms in ~ involve a multiple of either W (fi0, v2) or W(fi3, ~2) and are thus dominant as they 
contain the exponential factor 

E (t/2) = exp { -{- 2e- kt/2{ }. (5.8) 

In particular, 

= D1 (~) W (~0, ~2)[C3 (g)B(r3, ~,) 4- B3(g)S(r0, ~1)] - D1 (e)W(fi 3, ~2) S (rio, ~1). (5.9) 

On the other hand, terms in ~ contain no exponential factors and are balanced while terms 
in N contain the exponential factor E -  ~ (t/z) and are recessive. Because of these exponentials, 
for e~ 1 we have 

>>~ >> ~ .  (5.10) 

It is particularly convenient to explicitly take account of the rapidly varying exponentials 
and re-write Eqn. (5.7) as 

Al(e, ~)E(t/2)4- A2(8, ~)4- A3 (~;, ~) E-1 (t/2)= 0. (5.11) 

This form shows that the limiting behavior of the eigenvalues comes from the leading term in 
the approximate equation 

A~(~, ~)= 0.  (5.12) 

Indeed, Eqn. (5.12) remains a valid approximation to the full characteristic equation over a 
wide range of e. This is due to the fact that t/: lies on the Stokes line ph t /=0 in the complex 
t/-plane and hence E (t/z) and E-  ~ (t/:) are maximally dominant and recessive, respectively. As a 
result, both 0r and r will remain small compared to error terms in ~ ,  even for relatively large 
values of E (e = 0.1, say). Equation (5.12) may thus be used to obtain consistent second approxi- 
mation: to 2(~:, fi). 
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We now wish to derive approximations to A 1 (e, 3). From Eqns. (2.10--11) and (5.1), the quan- 
tity B(g3, gl)is order ~-2. By contrast, both ~-2 (d2/d~2)ao(~a) and 3-2N360(~a)with ~1 = t/1/~: 
are order one. Further, the leading term in Na ~1 (~1) is - ~22 A~ (6/e, - 1). Hence 

B(uo, Vl)=O(~, g-2(~2) . 

For second approximations to 2(e, 6), we need thus consider only the product W(~o, ~2)B(~73, 
va) in Eqn. (5.12). 

The expansion for the Wronskian W (Uo, v2) involves E (r/2) times a Poincar6 series in powers 
ore ~ with coefficients depending on 3. As 3 is small, the expansion of these coefficients in powers 
of 3 is a straightforward process. Similarly, the expansion for B(fi~3, gl) is a series in powers ofe 
involving Airy functions evaluated at 3/e. If 3 is less than order e, these Airy functions may in 
turn be re-expanded relative to the turning point as series in 3/e. The special case 3 = O (e) is 
treated at the end of this section. 

Up to this point, we have only assumed c5 does not exceed order e. It has not been necessary 
to make explicit assumptions about the relative sizes of 3 and e, nor have we assumed a par- 
ticular expansion for 2(e, 6). However, to consistently order approximations to W(fio, v2) B(u3, 
gl), we must now treat different ranges of ~ separately. In what follows, we will use Hardy's 
notation " < "  and " ~ "  for relative orders of magnitude. For example '~f<~l" may be read 
" / i s  of small order than g". 

Range 1 : (3 ~ ~ .  
In this case, terms of order 3 and (cS/e) 2 in W(~o, ~2) and B(~ 3, ~1) may be neglected relative 

to terms of order ~- and e, respectively. The consistently ordered approximation to A 1 (e,, 3) = 0 
is now of the form 

Jo(22) {1 - 22 ~ ~(~)Ai(0)+0((3/e,)2 } 

+ a~ {Jo (22) [G1 (1)-  �88 + 2J1 (22)} + O (a 2 log e) = 0 (5.13) 

where Jo(z), Jl(z) are Bessel functions, Ai(z) is the usual Airy function, and Ai(0), Ai'(0) 
are non-zero constants. Equation (5.13) suggests an expansion for 2 of the form 

2 = 2 (~ + a ~ 2 (1) + . . . .  (5.14) 

We now find that 2 (~ is determined by the relation Jo (22(~ = 0, i.e. 

1. (5.15) = ~J0,n 

where Jo., is the n-th positive zero of the Bessel function Jo. Further, 2(1)=�89 (~ and hence 

2 . - V o , .  1 + ~ - +  . . . .  (5.16) 

To this order, Eqn. (5.16) is identical with the corresponding result for the limiting problem of a 
bob-less pendulum. At the earliest, 6 enters the expansion for 2 at third order. 

Range 2 : 6 = 0 (e~). 
This range of 6 is a transition case. Consistent ordering of approximations to A1 (e, 6) is 

now a delicate matter as many terms in the product W(fi0, ~2)B(~3, ~1) are of the same order 
and, in the strict sense, must be included. In particular, (6/~) 2 is order e while 6, (6/e) 3, and e(6/e) 
are all order e t-. Fortunately, the first approximation 2 (o) again comes from the vanishing 
of Jo(22(~ Hence, it is sufficient to write the approximation to AI(a, 6)=0 in this case as 

So (22) Q (6, e) + 2sl (22)[e ~ -  6 + O (e2)] = 0 (5.17) 
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where 

~(~, ~)=1+0(8t (5.18) T:/  

If, in addition, we now let 

8 = a e ~ (5.19) 

where a is an order one constant independent of e, expanding )~ as in Eqn. (5.14) gives 

.~7~ = 1jo,., } 
(5.20) 

x~ 12 ~x~o~. 
We thus have 

l1 ; } = yY0,. + e ~ -  8) + . . . .  (5 .21)  

The slight rod stiffness and small bob mass now influence the eigenvalues simultaneously and 
produce a second order deviation from the limiting behavior. 

Range 3 : ~ -< 8 ~ ~ . 
Terms of order e~ may now be consistently neglected relative to terms of order 8, and we ob- 

tain as an approximation to A x(e, 8)= 0 the equation 

I1+0( I/= 0 / 22, 
This suggests an expansion for 2 of the form 

2 = 2 (0) + 82 ~1) + . . .  (5.23) 

which gives 

/ 2 , = ~ o , ,  1 - ~ +  . . . .  (5.24) 

The parameter e now does not enter the expansion for 2 until higher order. 

Range 4 : 8 = 0 (e). 
For convenience, we let 8 = ae where a is again a non-zero constant independent of e. 

In this range, powers of (8/e) are all order one so, for the present purposes, the generalized Airy 
functions in B (ti 3, ~1) cannot be expanded relative to the turning point. Leaving these functions 
evaluated at 8/e= a, we obtain the approximation to A 1(~, 8)= 0 

where 
fl (~) = [Ai (or) - aAi '  (a)]/Ai' (a) 

is a non-zero constant. Expanding )~ in the form ;t = 2 (o) + e;t (1) + .... we now recover the result, 
Eqn. (5.24). 

6.  D i s c u s s i o n  

The distinguishing feature of this boundary value problem is the singular perturbation in the 
small parameter e coupled with the presence of a second parameter 6 which measures the 
distance between an endpoint and a simple turning point of the governing differential equation. 
Even though it lies outside of the interval of interest, for 8 ~< e this turning point cannot be ignored, 
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and inner expansions as well as outer expansions must  be used in the b o u n d a r y  value problem. 
We have derived partial sums of  the required matched  inner and outer  expansions without  
making  explicit assumptions on the size of  5. However ,  the correct  ordering in approximat ions  
to the characteristic equat ion (and hence the relevant expansion for 2 (e, 6)) is critically dependent 
on the relative sizes of  the two parameters.  

Equat ions  (5.16), (5.21), and (5.24) show that  over the entire parameter  range 6~< e the ex- 
pansions for 2 agree at lowest order. However,  there is a smooth  transit ion in 2 at second order 
f rom 6 ~ e ~" th rough  (5 = O (e) with (5 = O (e ~') representing a transit ion range. Indeed,  if we define 
the step functions 0{ 1 ((5) and 0~12((5 ) by 

l 1 (5~<5 ~ 

cq = (6.1) 

0 5~(5<--.,5 
and 

0 (5<e ~ 

~2 = ] (6.2) 
[ 

the, the thre~ expressions for 2(e, 5) may  be condensed into the single consistent second appro-  
ximation 

1 / �9 ~ n = ~ J o , .  1 -'~ 5 (0{15- - -  ~2 (5) -1- . . . .  (6.3) 

Hence, for (5 < e), at earliest 6 contributes to 2 at third order. On  the other  hand, when e } % (5 ~ e, 
(5 contributes to the expansion of  2 at second order, and tends to decrease 2. In terms of  the 
physical scales, the parameter  range 5 { ~  (5 ~ ~. corresponds  to 

(pEII-~%M<~ ~ q  I)~ . (6.4) 
gL ] 

Thus for small bobs in this mass range, increasing the bob  mass will p roduce  a second order 
decrease in the natural  frequencies of  vibration. 
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